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Suggested Use. Try to remember everything you can about each topic before reading these
notes, then look over them and see what you’ve forgotten/aren’t able to prove.

1 Basics

� Given a set X, a collection of subsets T ⊆ P(X) is called a topology of X if the following
conditions are satisfied:

(a) ∅, X ∈ T .

(b) T is closed under (arbitrary) unions, i.e. for any S ⊆ T , we have
⋃
U∈S U ∈ T .

(c) T is closed under finite intersections, i.e. for any finite subset S ⊆ T ,
⋃
U∈S U ∈ T .

The elements U ∈ T are called open sets, and for each x ∈ U we say that U is a
neighborhood of x. We will call the pair (X, T ) a topological space. When T is clear from
context we simply write X instead of (X, T ).

� E.g. in the Euclidean topology on Rn, a set U is open iff for all x ∈ U there exists an
open ball B containing x contained in U .

� E.g. if X is a space and A ⊆ X, then the subspace topology on A has V ⊆ A open iff
there exists an open set U in X such that V = U ∩ A.

– Proof that this is actually a topology: ∅, X are easy. For finite intersections, if you
have V1, . . . , Vr open then Vi = Ui ∩ Y for some Ui, then

⋂
Vi =

⋂
Ui ∩ Y which is

open since X is a topology. The proofs for unions is similar

� Given a space X, a set C ⊆ X is said to be closed if X − C is open.
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� For a space X and A ⊆ X, the closure of A, denoted A, can be defined in many equivalent
ways. The most useful definition tends to be that x ∈ A iff every neighborhood of x
intersects A.

� Given a topological space X, we say that a sequence of points (xn)n≥1 in X converges to
a point x if for all neighborhoods U of x, there exists N ≥ 1 such that xn ∈ U for all
n ≥ N .

� A topological space is said to be Hausdorff if for each pair of distinct points x, y, there
exist neighborhoods U, V of x, y respectively which are disjoint.

� Important property 1 of Hausdorff spaces: if X is Hausdorff, then every sequence xn
converges to at most one point.

Proof idea: if there were two limits x, y, take U, V containing each of them and disjoint,
a sequence can’t eventually end up in both of them.

� Important property 2 of Hausdorff spaces: if X is Hausdorff, then every one-point subset
{x} ⊆ X is closed (and hence every finite subset is closed).

Proof idea: use the “neighborhood trick.” Want to prove X − {x} is open. For each
y ∈ X − {x}, Hausdorff implies there exists open neighborhood y ∈ Vy ⊆ X − {x}, the
union of these Vy equals X − {x} and is open (since arbitrary unions of open sets are
open).

2 Continuous Functions and Basis

� A function f : X → Y is continuous if “the preimage of open sets are open”, i.e. for every
V ⊆ Y open the preimage f−1(V ) is open in X.

� E.g. the composition of two continuous functions f : X → Y and g : Y → Z is continuous
(because (g ◦ f)−1(U) = g−1(f−1(U))).

� A map f : X → Y is said to be a homeomorhism if (a) f is a bijection, (b) f is continuous,
and (c) f−1 is continuous (or equivalently, f(U) is open whenever U is open).

If there exists a homeomorphism between X, Y we say these spaces are homeomorphic
and write X ∼= Y .

� E.g. the intervals (0, 1) and (1, 2) are homeomorphic (since we know translation map
f(x) = x+ 1 is continuous by calculus).

� Given a set X, a collection of subsets B ⊆ P(X) is called a basis of X if (1) for every
x ∈ X, there exists some B ∈ B containing x and (2) for all B1, B2 ∈ B and x ∈ B1 ∩B2,
there exists B ∈ B with x ∈ B ⊆ B1 ∩B2.

E.g. open balls in Rn is a basis (proof by picture).
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� If B is a basis for X, the topology T generated by B has two equivalent definitions:

First definition (less useful): U ∈ T if and only if for all x ∈ U there exists B ∈ B with
x ∈ B ⊆ U .

Second definition (more useful): U ∈ T if and only if U can be written as the union of
elements of B.

� Important property 1 of basis: if Y is generated by a basis B, then f : X → Y is
continuous iff f−1(B) is open for all B ∈ B.

� Important property 1 of basis: if X is generated by a basis B and A ⊆ X, then x ∈ A iff
every B ∈ B containing x intersects A.

3 Products

� Given topological spaces X, Y , define the product topology on X × Y as the topology
generated by the basis B = {U × V : U open in X, V open in Y }.
Warning: not all open sets in X × Y are of the form U × V (e.g. the union of two
rectangles is open.

� Main property of product topology: a function f : Z → X1 × X2 of the form f(z) =
(f1(z), f2(z)) is continuous iff each of the maps fi : Z → Xi are continuous.

� Recap of set theoretic product notation (skip if no one wants to see this and/or if low on
time).

– Given sets J,X, we define a J-tuple of elements of X to be a function x : J → X.
If α ∈ J we often denote the value x(α) by xα and denote x by the symbol (xα)α∈J .

– Given an indexed family of sets {Aα}α∈J , we define the cartesian product
∏

α∈J Aα
to be the set of all J-tuples of X =

⋃
Aα such that xα ∈ Aα for all α ∈ J .

If Aα = X for all α ∈ J , then we will write this product as XJ (equivalent to set of
all functions from J to X), and if J = Z>0 we use the shorthand Xω.

– Eg if J = {1, 2} then A1 × A2 consists of all functions x : {1, 2} → A1 ∪ A2 with
x1 ∈ A1 and x2 ∈ A2. This is just the usual definition.

– Eg if J = Z>0 and Aα = R for all α what is
∏
Aα = RZ>0 = Rω? Formally this is

all functions f : Z>0 → R, which (in tuple notation) is the set of sequences of real
numbers (e.g. (n2)n≥1 is in this set).

� Given a family of topological spaces {Xα}α∈J , we define the box topology on
∏
Xα as

having the basis consisting of sets
∏
Uα where Uα ⊆ Xα is open.

This is not so useful.
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� Given a family of topological spaces {Xα}α∈J , we define the product topology on
∏
Xα as

having the basis consisting of sets
∏
Uα where Uα ⊆ Xα is open and where Uα = Xα for

all but finitely many α.

This is useful.

� Main property of product topology: let πβ :
∏

αXα → Xβ be the projection map onto
the β coordinate. If

∏
Xα has product topology then a map f : Z →

∏
Xα is continuous

iff πα ◦ f is continuous for all α.

� Other important property of products: a sequence of points xn ∈
∏
Xα under the product

topology converges to a point x iff (xn)α converges to xα for all α (i.e. the product topology
is the topology of pointwise convergence).

4 Metric Spaces

� Given a set X, a function d : X ×X → R is a metric if (1) d(x, y) ≥ 0 for all x, y ∈ X
with equality iff x = y, (2) d(x, y) = d(y, x) for all x, y ∈ X, and (3) Triangle inequality:
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

� Given a metric d, a point x ∈ X, and a real number ε > 0, we define the open ball
Bd(x, ε) = {y ∈ X : d(x, y) < ε}.

� Given a metric d, the metric topology induced by d is the topology generated by the basis
of open balls Bd(x, ε). Note that U is open iff for every x ∈ U we have some Bd(x, ε) ⊆ U .

� We say that a topological space X is metrizable if there exists a metric d on X which
induces the topology of X. A pair (X, d) is a metric space if X is a metrizable topology
and d is a metric inducing the topology on X.

� Important property of metrizable spaces 1: if X is metrizable, then X is Hausdorff.

Proof idea: after specifying a metric d, we can take neighborhoods for x, y to be the balls
of radius d(x, y)/2 centered at each of x, y.

� Important property of metrizable spaces 1: (Sequence lemma) Let X be a topological
space and A ⊆ X. If there is a sequence of points of A converging to x, then x ∈ A. The
converse holds if X is metrizable.

Proof idea: first part is easy unwinding of definition. For second part, after specifying a
metric we take xn to be a point in A intersecting Bd(x, 1/n) (exists because x ∈ A); this
sequence turns out to converge to x.

� Let fn : X → Y be a sequence of functions with (Y, d) a metric space. We say that (fn)
converges uniformly to a function f : X → Y if for all ε > 0 there exists an N such that
d(fn(x), f(x)) < ε for all n ≥ N and all x ∈ X.
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� Uniform limit theorem: let fn : X → Y be a sequence of continuous functions with Y a
metric space. If (fn) converges uniformly to f , then f is continuous.

5 Quotient Spaces

They only need to know how to intuitively identify quotient spaces. As such you might draw
e.g. the quotient diagram for a torus (a square with opposite sides oriented in the same way)
and explain how to do this. Can ask them for other spaces from notes/homework that they
want clarification on (if any).
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